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Drilling with water has the potential to significantly reduce the respirable dust
concentrations generated from small-diameter rotary drills when drilling
blastholes on surface mining operations. However, water adversely affects tri-
cone drill bits commonly used in surface drilling operations, causing excessive
wear and premature replacement. Consequently, dry drilling with a dust
collector system has the most widespread use in the industry. Tests have been
conducted by the National Institute of Occupational Safety and Health
(NIOSH), Pittsburgh Research Laboratory (PRL) on a newly designed device
for smaller diameter drills that separates the water from the bailing air before it
reaches the bit and thus provides the cost benefit of dry drilling while providing
the benefit of wet drilling for dust suppression. The water that is-delivered to the
hole with the bailing air is separated from the air by a proprietary mechanical
device that is encased in a drill sub (short section of drill rod/pipe) located
immediately behind the cutting bit. A cascade cyclone and a real-time dust
monitor were used to sample dust emissions from the holes. Dust concentrations
and silica content were measured when drilling dry versus drilling wet. The tests
show that drilling with this water separating sub can reduce both measured dust
emissions from the boreholes and visible dust around the drill rig.
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1. Introduction

Dust generated from the drilling of blastholes by rotary drills at surface mining operations may
contain harmful amounts of respirable silica dust. Overexposure to respirable (<10 um in
aerodynamic diameter) silica dust can lead to workers developing silicosis, a debilitating and
potentially fatal disease that causes scar tissue in the lungs and reduces lung capacity.



Additionally, the International Agency for Research on Cancer (IARC) classified silica as a
carcinogen (IARC 1987, 1997). The regulatory standard for coal mine dust exposure in
underground and surface mines is 2.0 mg/m® when the silica content in a dust sample is 5% or less.
When the silica content is greater than 5% in the sample, the standard is reduced by dividing the
number 10 by the percentage of silica in the sample.

Between the years 1985 and 1992, the Mine Safety and Health Administration (MSHA)
collected and analysed respirable dust samples for silica content on all surface mine occupations.
The results show that, of all surface mine occupations sampled, the drill operator and drill helper
had the highest percentage of samples containing greater than 5% silica, 81% and 88%
respectively (Tomb er al. 1995). This is further supported by the National Institute for
Occupational Safety and Health (NIOSH), which confirmed that mining machine operators
accounted for the highest incidence of silicosis-related deaths from 1990 to 1999 (NIOSH 2003).
More recently, drill operator samples collected by MSHA between the years 2000 to 2004 showed
that 14% exceed the permissible exposure limit, Because of the threats they pose to employees’
health, these occupations have been the focus of dust mitigation research.

Most blasthole rotary drill rigs use dust collectors to capture dust emissions. During drilling,
dry compressed air (bailing air) travels to the bit through the drill pipe. The bailing air, which exits
from the nozzles at the bit, keeps the bit cool, flushes the cuttings from around the bit, and forces
the cuttings up the hole, expelling them at the surface. Large amounts of dust can be produced
during the drilling process and dust collectors, operating under optimum conditions, are used to
maintain dust concentrations to a safe level,

The dust collectors are vacuum systems that are mounted on the drills and consist of a fan,
filters, a collector tube and a shrouded drill deck over the hole. These systems draw dust
emissions from beneath the shrouded drill deck as they exit the hole. Figure 1 shows the layout
of a typical dust collector mounted on a surface blasthole drill. The drill deck and shroud, which
enclose the drill hole, are connected to the dust collector unit by a collector tube. The fan in the
collector unit creates negative pressure within the shrouded deck area to remove the dust from
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Figure 1. Dust collector on a surface mine blasthole drill.



underneath the deck into the collector as the dust is being fiushed from the hole. Once inside the
dust collector, the dust-laden air passes through filter media for dust removal, and the filtered
air is then expelled into the atmosphere. To prevent the filters from clogging, the filters are
periodically cleaned by back-flushing with compressed air. The dust that is cleaned from the
filters falls into the collector dump and exits the collector unit by means of a chute onto the
ground,

When new and maintained, dry dust collectors can effectively achieve greater than 95%
respirable dust removal under optimum operating conditions. However, as operating parameters
change and dust collection systems degrade, the effectiveness of these collectors has been shown to
fall below 42% in dust removal efficiency (Zimmer and Lueck 1986). Dust escaping the dry
collector unit can be traced to several sources (Organiscak and Page 2005). Damaged or non-
functional filters will result in dust-laden air reaching the fan. Collector system enclosure
components, whose primary purpose is to capture and contain the dust, can cause dust leakage
when the components are damaged or worn. Dust leakages also can occur from the shroud and
the drill table bushing, resulting in over half of the dry dust emissions from the collection system
(Maksimovic and Page 1985), In figure 1, the dust shroud is not making a good seal with the
ground and dust can be seen escaping from the shroud area.

Previous studies have shown the effectiveness of controlling dust from surface mine blastholes
by drilling with water. A cohort mortality study of sand workers in North America (Rando er al.
2001) showed that a change from dry drilling to wet drilling was one of the common process
changes that reduced historical exposure to silica in the sand industry. A study by the US Bureau
of Mines (1983) showed the potential benefits of wet suppression drilling on large-diameter
blasthole rotary drills at surface coal mines. It was reported that the water injection method of
dust control showed substantial reduction in the amount of respirable dust emanating from the
holes, with respirable dust control efficiencies ranging from 94 to 99%.

Despite its proven effectiveness, there are disadvantages to wet drilling with tri-cone bits. In
northern regions where temperatures fall below freezing, drilling with water could be a problem
during winter months, However, additives that prevent the freezing of water in tanks are
available. Although not tested in this study, ethylene glycol and propylene glycol are both used
in antifreeze solutions. According to the Agency for Toxic Substances and Disease Registry
(ATSDR), the Food and Drug Administration (FDA) has classified propylene glycol as an
additive that is ‘generally recognized as safe’ for use in food (ATSDR 1997). The Department of
Health and Human Services, IARC and the Environmental Protection Agency (EPA) have not
classified ethylene glycol or propylene glycol for carcinogenicity (ASDR 1996), Wet drilling also
causes premature rotary drill bit degradation and failure as a result of the corrosive process of
hydrogen embrittlement (an event that occurs with the ingress of hydrogen into a component).
This process reduces the ductility and load-bearing capacity, and causes cracking and
catastrophic failure at stresses below the normal yield stress of the affected material. To
overcome the premature bit failure caused by wet drilling, a mechanical device to separate the
water from the air was tested and shown to be effective in keeping injected water from reaching
the bit (Page ez ai. 1988). The device, a drill sub located directly behind the bit, uses the high
inertia of the water to separate it from the air. The air passes through the water separator sub to
the bit while the water accumulates and is ejected out weep holes into the annulus of the drill
hole above the bit. As the water travels up the hole to the surface, it mixes with the cuttings and
reduces dust emissions at the mouth of the hole. This means of water separation works well for
larger (25.4 cm (10 in.)) diameter holes. However, due to the space requirements necessary for
the internal components of the device, its use on smaller diameter blastholes drills is not
possible.



Recently, a new design of water separating sub was developed in Australia. The technology of
this sub’s components differed from the previous designs, enabling water separation in a smaller
(16.8 cm (6 5/8 in.)) diameter unit. Many smaller surface mining operations drill with smaller
rotary drill rigs and could possibly benefit by using this device in their drilling operations. This
unit was tested and evaluated for its ability to reduce dust emissions during production drilling at
a surface coal mine. This paper addresses the new design for smaller diameter blasthole drills.

2. Equipment
2.1 Drill modifications

A model DM 50 E Ingersoll Rand rotary drill, originally equipped with a dry dust collector
system for dust control, was modified to enable water injection into the bailing air. The
modifications allowed the injection of a controlled and measurable quantity of water into the
bailing air on the drill. The water is introduced into the airstream at the drill masthead. The water
mixes with the air as it travels down the drill string toward the bit. The mixture encounters the
water separator unit before it reaches the bit and separation takes place. The water is expelled
above the bit while air travels to the bit and flushes out the rock cuttings. As the air and cuttings
move up the drill hole annulus, the water expelled from the water separator unit mixes with the
cuttings and agglomerates dust particles while being carried to the surface. Upon reaching the
surface, the dust particles have been subjected to enough moisture to prevent them from becoming
airborne upon exiting the hole,

A 7571 (200 gal.) high-pressure water tank was installed on the drill carriage to provide the
water-to the bailing air (figure 2). The water supply for the tank was drawn from an on-site pond
by a tank truck and then pumped into the water tank on the drill. An airline from the drill's air
compressor to the tank enabled pressurization within the tank to force the water to the drill stem.
A high-pressure 19 mm (3/4 in.) water line was connected from the tank to an airline that
connected to the rotary drive at the top of the drill stem. This line supplied the water from the
tank, through the rotary drive, to the drill string. To maintain control and monitoring of
the amount of water, controls consisting of a valve and flowmeter were installed inside the
operator’s cab.

Figure 2. Water tank location on drill rig.



2.2 DAMPA stabilizing sub

The device tested was supplied by DTH Supplies (DTH Supplies Pty Ltd, 45 Spinnaker Ridge
Way, Belmont, NSW 2280, Australia). This device, called the Dust Arresting Multi-Purpose
Adapter, or DAMPA", is a proprietary-designed, self-contained mechanical sub that uses
centrifugal force to separate water from air, The DAMPA is a multi-chambered device that
separates the air and water supplied to the drill stem before it enters the drill bit. The drill's cutting
bit is screwed into the sub so that the separation takes place just before the bit, thus preventing
water from reaching the bit. After separation, the water is ejected from three ports located 120°
around the circumference of the sub. The small-diameter unit is 12.7 cm (5 in.) in diameter by
55.9 cm (22 in.) long, and is rated at 0.28 m°/s (600 cfm). According to the manufacturer's
specifications, only 4% of the bailing air is lost from the ports and 97% of the water is removed
from the air. The amount of water required to suppress dust varies because of hole size,
penetration rate, overburden rock and air volume. The manufacturer suggests setting water flow
to a rate necessary to eliminate visible dust from the borehole. For this mining operation, 3.0 I/
min (0.8 gpm) of water was adequate for dust suppression. Figure 3 shows a schematic illustration
of the DAMPA unit and its location on the drill stem.
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Figure 3. Schematic of DAMPA unit (left). DAMPA installed on drill (right).

*This article includes a word that is or is asserted to be a proprietary term or trade mark. Its inclusion does not imply it has
acquired for legal purposes a non-proprietary or general significance, nor is any other judgement implied concerning its legal
status. Use of this instrument does not imply endorsement by NIOSH.



3. Sampling methods
3.1 DAMPA sub trials

Field testing of the DAMPA sub was conducted at a small surface coal mine located in
northern West Virginia, During these trials the DAMPA sub was tested to evaluate its
effectiveness for reducing respirable silica dust. Two sampling methods were used to measure
respirable dust emissions while using the DAMPA sub. One method, which has been described
previously by Listak (2003), used a cascade cyclone (Model 283-2, Grasebe-Andersen, Smyrna,
GA) that sampled respirable dust inside the dust collector tube. This sample was weighed and
then sent to a laboratory to determine the silica content of the airborne dust sample. The other
method uses an MIE personal data ram (pDR) (Mode] pDR 1200, Thermo Elecron Corp.,
Smyrna, GA) placed adjacent to the drill deck to record respirable dust concentrations outside
the drill shroud. Figure 4 shows the locations of both systems. The sampling location of the
cascade cyclone is shown to the left of the drill deck next to the dust collector tube. The pDR
sampler, used to record respirable dust concentrations outside the drill shroud, was located in
front of the drill deck for each test. Field testing was completed over four days of testing at the
mine site,

All the holes drilled and used for data analysis utilized three drill steels of 7.6 m (25 ft) length.
The third drill steel was only partially drilled as drilling stopped when coal was encountered. The
DAMPA was installed and used during both dry and wet drilling. During the drilling operations a
time study was performed, recording the start and stop times of the hole drilling, along with the
times required for adding additional drill steels.

Figure 4. Location of dust sampling instruments,



3.2 Cascade cyclone

A component of the drill’s dust collector system that draws a consistent amount of airborne dust
from the hole is the collector tube, Assuming the collector system is working as designed, sampling
from within the collector tube would enable a more consistent and better representative dust
sample. Due to the large amounts of dust emitted during drilling, the cascade cyclone was selected
as a means of sampling because it has a high particulate collection capacity (up to 10 g per stage),
which permits longer sampling times. It could therefore be used for sampling in the collector tube
for the entire length of the drill hole.

The sampler consists of two cyclones with particulate collector cups and a backup filter for three
size classifications. The cyclone measures the aerodynamic particle size instead of its physical size.
The aerodynamic size or diameter is a measure of the inertial behaviour of the particle moving in
air and is defined as the diameter of a unit density (1 g/cm?) sphere that settles with the same
velocity as the particle (Lodge and Chan 1986). Therefore, the aerodynamic diameter gives
information not only of the size but also of the density of a particle and indicates how the particle
will behave in an environment. When sampling at a flow rate of 28.3 1/min, the cascade cyclone
sampler is designed to classify dust at aerodynamic diameters of 7.5, 2.7 and 0.57 ums. The final
stage (at 0.57 um) contains a 63 mm PVC filter. Filters were pre- and post-weighed on a Mettler-
Toledo microbalance (precision 35 ug) (Model UMT2, Mettler-Toledo, Columbus, OH) in a
climate-controlled room after desiccation and equilibration.

In order for the cascade cyclone to collect respirable dust samples from inside the dust collector
tube during drilling operations, a port was created in the dust collector tube to allow the nozzle
inlet of the cyclone to be inserted into the tube. Velocity measurements were taken inside the
collector tube to match the sampling velocity of the nozzle to the velocity of air in the tube so that
samples could be taken isokinetically (Willeke and Baron 1993). The sampler has a range of
interchangeable nozzles of varying diameters to allow for isokinetic sampling at velocities ranging
from 8.0-50.3 m/s (1570-9910 fpm). An initial velocity of 9.9 m/s (1950 fpm) was measured,
which is a low speed for dust collection efficiency. After opening the collector and cleaning the
filters, the velocity increased to 28.2 m/s (5550 fpm).

The cyclone was set up adjacent to the dust collector tube and connected to a vacuum pump
operating at a 28.3 |/min flow rate. The samples from the dust collector tube were collected from
the two sampling cups, with cut points of 7.5 and 2.7 pm, and on the filter mounted in the cyclone.
After every hole, the cups were emptied and the filter was removed and stored to later determine
dust concentration and silica content. After each hole, the cyclone setup was removed to allow the
drill to tram to the next hole and then reassembled for sampling the next hole.

3.3 Personal data ram (pDR)

The pDR is a real-time monitoring instrument for measuring mass concentrations of dust, mist,
smoke and fumes. It was used in this study to measure the respirable fraction of airborne dust
during rotary drilling. The pDR is a light-scattering nephelometer. The intensity of the light
scattered over a forward angle of 50-90° by airborne particles passing through the sensing
chamber of the device is linearly proportional to their concentration. Particle measurement is a
function of the light reflected into the detector from the particles. This optical configuration
produces optimal response to particles in the size range of 0.1-10 um. These instantaneous
sampling instruments provide relative differences in dust levels. The unit has a concentration
measurement range of 0.001-400 mg/m’. Time-stamped dust levels are stored at specified
intervals in the unit for subsequent download to a computer. For calibration purposes, a



gravimetric sampler is used with the pDR during each dust sampling survey, and then the pDR
is calibrated against the gravimetric measurement to arrive at dust concentrations for the unit.
The authors feel this is a more accurate way to sample with the pDR because it takes into
consideration that the dust cloud may not be consistent from test to test or from survey to survey.
Zeroing of the pDR units was performed after every test according to the manufacturer’s
specification using the zeroing bag.

Using the pDR, real-time dust measurements were taken outside the shroud area in front of the
drill every 5 s while dry drilling was performed on four different holes to determine the amount of
dust escaping the collector system. The DAMPA was installed and measurements were taken on
four holes while drilling with water.

3.4 Visual observations

Surface mine operations often face opposition from nearby communities for creating large
amounts of dust that propagate into residential areas. Most of this dust is created from haul roads
and drilling operations, and health concerns about the dust often arise. Observations were thus
made to determine the visible difference in dust in the area around the drill when drilling with each
method. The differences in visible dust were documented through photographic pictures taken
during testing.

4. Results
4.1 Cascade cyclone

The sampling plan called for drilling and sampling ten holes using the dry collector and ten holes
using the DAMPA., A total of 18 holes were monitored for dust levels and visible dust during four
days of testing. Various operational problems arose during testing that prevented the collection of
complete data for all of the planned test holes while using the DAMPA. These operational
problems caused inconsistent sampling results because of the downtime during the drilling and
abandonment of holes during the wet drilling process. However, dust reductions were seen on
every hole drilled while drilling with water. Although problems arose that did not allow complete
sampling of the entire set of wet-drilled holes, data were collected for four complete holes while
wet drilling with the DAMPA installed. Under the assumption that these four holes are
representative of all wet-drilled holes, for comparative purposes, these four wet-drilled holes were
compared to four holes that were sampled while using only the dry collector, The four dry holes
chosen for comparison were similar in depth and proximity to the four complete holes drilled with
the DAMPA, each using three drill steels and located on the same drill bench. Other dry holes
were not used because they were not located near the holes that were drilled using the DAMPA.

Samples taken from the cyclone (collector tube) were analysed for dust mass and percent silica
on the final filter. Drilling time is the actual time the bit was drilling and does not include the time
to change drill steel or remove the drill steel and tram to the next hole. Table 1 shows the data
collected from the eight holes.

The most dramatic difference between the two drilling methods was the concentration measured
in the collector tube by the cyclone. An average reduction from 490.8—24.2 mg/m” was realized
when using the wet drilling method (figure 5).

The advance rate (penetration rate) for each method was also recorded during dry and wet
drilling—0.64 m/min (2.1 ft/min) and 0.59 m/min (1.9 ft/min), respectively. Advance rate varied
little, as did the amount of silica in the cyclone samples, A bulk sample of the drill hole cuttings



Table 1. Dust levels and silica amounts measured with the cascade cyclone.

Hole Depth m (ft) Drilling time minutes Dust concentration mg/m”’ Silica %
Dry
1 18.9 (62) 29 3133 30.3
2 21.6 (71) 33 203.7 3.6
3 20.4 (67) 33 711.2 25.0
4 21.3 (70) 32 734.8 25.4
Avg 20.6 (67.5) 32 490.8 28.1
Wet
1 18.3 (60) 25 24.6 44.8
2 17.4 (57) 23 23.7 224
3 16.5 (54) 34 27.8 21.8
E 16.8 (55) 39 20.7 16.8
Avg 17.3 (56.5) 30 24.2 26.5
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Figure 5. Dust concentration in collector tube when drilling dry versus wet.

was also collected and analysed for silica content to compare the amount of silica collected on
the filter in the cyclone samples to the silica amount from the cuttings. The silica content in the
cuttings taken from samples of four holes (one dry and three wet) was 59.3%, as opposed to an
average of 27.3% from cyclone filter samples taken from the same holes, This result shows that
the overall silica content of the rock being drilled is more than twice the silica content of the
fine-sized (>2.7 um) airborne samples collected from the collector tube. This result suggests that
silica content of the rock cannot be used as a measure of the silica content in the respirable
sample. This finding concurs with an underground study of host rock silica content (Ramani
et al. 1987).

4.2 Visual observations

From a visual perspective, the area surrounding the drill was much cleaner using the wet drilling
method. Figure 6 shows drilling with both methods on the same bench and under the same
conditions. Both pictures were taken when the drill was fully operational and drilling was
underway. These pictures are typical for all holes drilled over the course of the survey.



4.3 Personal data rams

To measure the dust escaping the dust collection system, instantaneous respirable dust concentra-
tions outside the drill shroud were collected in addition to the dust within the system. Area sampling
of dust with these instruments outdoors can be difficult because the dust concentrations vary greatly
depending on wind conditions (i.e. direction and speed). The pDRs were used in this study to give
the relative differences in dust at the drill deck during each method of drilling. The pDR used in this
study was positioned in front of the drill deck for each of the tests, as shown in figure 4.

The instantaneous data from the pDR are plotted in figure 7, which shows the average
instantaneous respirable dust concentrations in mg/m® for each hole drilled for both wet and dry
drilling. These concentrations consist of the averages of all concentrations measured by the pDR
for the total hole length (top to bottom for each hole). Figure 7 shows that the respirable dust

Figure 6. Dust liberated during dry drilling (left) and wet drilling (right).
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Figure 7. Comparison of dust concentrations in dry drilling versus wet drilling.



concentrations ranged from 1.042-52.297 mg/m® for dry drilling, while the concentrations ranged
from 0.217-8.502 mg/m® for wet drilling with the DAMPA sub, indicating that wet drilling
effectively reduced respirable dust concentrations. It should be noted that the higher respirable
dust concentration of 8.502 mg/m® from drill hole 4 of the wet drilling was due to the large
shroud-to-ground gap of approximately 30.5-61 cm (12-24 in.). This occurred because of the
ground surface sloping downhill away from the drill. Other shroud-to-ground gaps for the other
drill holes were not as significant, only varying from 25.4~50.8 mm (1-2 in.). Ideally, the shroud
should fit tightly to the ground but because of ground undulations or grade changes, complete
contact with the ground is rare. The other variations in respirable dust concentrations might have
been due to changing wind directions and wind speeds (throughout most of the day the wind was
calm, with slight breezes occurring often and sometimes shifting directions).

5. Discussion of results

As the results described in this paper indicate, wet drilling reduces the amount of dust generated
during drilling operations. The purpose of the DAMPA is to perform wet drilling while allowing
the drill bit to work under conditions that are close to dry drilling, thus enabling longer bit life.
However, this study was not able to determine if there are any benefits to the drill bit life as a result
of using the DAMPA. This was due to various problems encountered at the mine site, both
operational and logistical.

Many of the problems encountered when using the DAMPA were due to the regulation of water
flow. Specifically, constant water flow to the device was not maintained because of the method of
pressurization of the water tank. Water flow from the tank varied as water levels in the tank
changed during usage. A flowmeter and valve mounted in the cab did not provide enough control
to properly regulate the flow to the unit. This problem could be solved by using a constant flow
pump on the outflow of the tank.

The condition of the overburden at this site also had a detrimental effect on drilling
performance. The overburden being drilled was highly weathered and fractured. When flows were
too high the high-pressure water ejecting from the weep holes of the DAMPA caused hole-wall
deterioration and spalling above the bit. This circumstance caused the holes to cave in, requiring
re-drilling without water and, in some cases, abandoning the entire hole. This did not seem to
occur when dry drilling with the DAMPA.

There was a significant amount of troubleshooting required to resolve these two conditions,
which limited the amount of data obtained during the study. Additionally, the mine site was a very
small operation where drilling did not occur on a consistent basis. However, being small did allow
the flexibility for successful troubleshooting to occur without interfering with other mine
operations. Moreover, this mine relied upon a drilling contractor to perform the majority of its
drilling needs. Therefore, while this site provided significant resources and produced good quality
dust measurement data, it was not ideal for determining long-term bit performance with the
DAMPA.

For the testing completed at this mine site, there is no indication that the DAMPA had
any impact upon the silica content of the dust in the cyclone samples, although this was an
expected result. The silica content would vary significantly based upon the surrounding geology,
rather than whether or not water was used in the drilling operation. Also, the amount of time
spent drilling (advance rate) to complete the drill holes was not significantly different with or
without water when using the DAMPA. However, with the limited amount of data (eight
drill holes total), it is not possible to determine any impact upon the drilling rate with or without
water,



6. Conclusions

Surface mine blasthole drilling generates large amounts of respirable airborne dust. When drilling
through overburden, there is a high potential for this dust to contain silica, which can cause
silicosis in employees in the vicinity of the drilling operation. While dust collectors are generally
used to reduce airborne respirable dust surrounding the drill, water is another method that has
been shown to be effective at reducing dust levels. _

The evaluation of the respirable dust levels of a rotary drill while drilling overburden
blastholes with the DAMPA dry versus drilling with water showed that dust levels surround-
ing the drill could range anywhere from 1.042-52.297 mg/m® when drilling dry versus
0.217-8.502 mg/m*® when drilling wet. Dust measured in the drill's collector tube by the
cyclone showed that dust levels were on average approximately 20 times higher when drilling
dry (490.8 mg/m®) versus drilling with water (24.2 mg/m®). This shows that wet drilling with
the DAMPA can reduce airborne respirable dust levels generated during drilling operations.
An added benefit of drilling with water is that the cuttings that are expelled and accumulate
around the holes are wetted and heavy and are thus less likely to be entrained into the
air during windy conditions. This benefit could possibly reduce the respirable dust levels
for the blasting preparation that occurs around the drill pattern once drilling has been
completed. _

Silica amounts in the respirable dust samples ranged from 25.0—31.6% for dry drilling and
16.8—-44.8% for wet drilling. The silica content averages did not vary significantly. It is expected
that any variations in silica contents were caused by the varying geology of the drill holes. Drilling
times did not vary significantly during testing whether dry drilling (32 minute average) or wet
drilling (30 minute average) with the DAMPA. The amount of data collected during this study,
due to operational and logistical problems, was not sufficient to determine the long-term effects of
the DAMPA on drill bit performance.

In conclusion, wet drilling with the DAMPA sub did reduce respirable dust levels during drilling
operations. Problems were encountered using the DAMPA, but these were deemed to be
correctable. Continued work and refinement of the process needs to be completed in order to
determine any effects on long-term drill bit performance when using the DAMPA to drill
blastholes at surface mining operations.
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